Table 1. Fractional atomic coordinates and thermal parameters

Anisotropically refined atoms are given in the form of the equivalent isotropic thermal parameter defined as $\frac{4}{3}\left(a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+\right.$ $a c B_{13} \cos \beta$).

	x	y	z	$B_{\text {eq }} / B\left(\AA^{2}\right)$
Ru	0.000	0.000	0.000	0.718 (8)
S(1)	$0 \cdot 1262$ (1)	$0 \cdot 1074$ (2)	$0 \cdot 12889$ (8)	0.93 (2)
S(2)	$0 \cdot 1716$ (1)	$0 \cdot 1225$ (2)	-0.07373 (8)	1.02 (2)
$\mathrm{Na}(1)$	0.0349 (3)	0.6132 (4)	0.2293 (2)	1.58 (4)
$\mathrm{Na}(2)$	0.6135 (3)	$0 \cdot 3543$ (5)	0.2841 (2)	1.91 (5)
O(1)	0.0679 (5)	0.2994 (7)	$0 \cdot 1618$ (3)	1.68 (8)
O(2)	0.1308 (5)	-0.0648 (7)	$0 \cdot 1918$ (3)	1.52 (8)
$\mathrm{O}(3)$	0.2839 (4)	0.1557 (7)	$0 \cdot 1280$ (3)	1.49 (8)
$\mathrm{O}(4)$	$0 \cdot 3230$ (4)	0.1357 (9)	-0.0171 (3)	1.90 (9)
O(5)	$0 \cdot 1990$ (4)	-0.0183 (8)	-0.1415 (2)	1.77 (8)
O(6)	$0 \cdot 1414$ (4)	0.3378 (7)	-0.1075 (3)	1.67 (8)
O(7)	0.3777 (4)	0.4813 (8)	0.2442 (3)	1.91 (8)
$\mathrm{O}(8)$	0.6358 (5)	0.3924 (9)	0.1382 (3)	$2 \cdot 5$ (1)
$\mathrm{O}(9)$	0.5686 (5)	0.2118 (9)	0.4140 (3)	$2 \cdot 6$ (1)
$\mathrm{N}(1)$	-0.1117 (5)	0.2913 (8)	-0.0149 (3)	1.35 (9)
H(1)	-0.1074	0.3906	0.0371	1.7
H(2)	-0.1973	0.2773	-0.0371	1.7
H(3)	-0.0859	0.3887	-0.0547	1.7
H(4)	0.3242	$0 \cdot 1680$	0.0547	$2 \cdot 3$
H(5)	0.3496	0.3887	0.2051	$2 \cdot 3$
H(6)	0.3047	0.4434	0.2793	$2 \cdot 3$
H(7)	0.6973	$0 \cdot 5000$	$0 \cdot 1309$	$3 \cdot 0$
H(8)	$0 \cdot 6289$	$0 \cdot 3906$	0.2031	$3 \cdot 0$
H (9)	$0 \cdot 6094$	0.3340	0.3711	$3 \cdot 1$
H(10)	0.5957	0.2578	0.4687	$3 \cdot 1$

Fig. 1. ORTEPII diagram (Johnson, 1976) and atom-numbering scheme. Non-H ellipsoids at 30% probability level, H atoms given arbitrary radii.

Table 2. Selected interatomic distances (\AA) and angles:
$\left(^{\circ}\right)$

Ru-S(1)	$2 \cdot 337$ (1)	$\mathrm{S}(2)-\mathrm{O}(4)$	1.577 (4)
Ru-S(2)	$2 \cdot 333$ (1)	$\mathrm{S}(2)-\mathrm{O}(5)$	1.482 (4)
$\mathrm{Ru}-\mathrm{N}(1)$	$2 \cdot 128$ (5)	$\mathrm{S}(2)-\mathrm{O}(6)$	1.482 (4)
$\mathrm{S}(1)-\mathrm{O}(1)$	1.481 (4)	$\mathrm{O}(4)-\mathrm{H}(4)$	1.189
$\mathrm{S}(1)-\mathrm{O}(2)$	1.497 (4)	$\mathrm{O}(3) \cdots \mathrm{H}(4)$	1.324
$\mathrm{S}(1)-\mathrm{O}(3)$	1.540 (4)		
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(2)$	94.0 (1)	$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{O}(3)$	$104 \cdot 0$ (2)
$\mathrm{S}(1)-\mathrm{Ru}-\mathrm{N}(1)$	91.1 (1)	$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(5)$	101.9 (2)
$\mathrm{S}(2)-\mathrm{Ru}-\mathrm{N}(1)$	$92 \cdot 0$ (1)	$\mathrm{O}(4)-\mathrm{S}(2)-\mathrm{O}(6)$	$105 \cdot 5$ (3)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	108.6 (3)	$\mathrm{O}(5)-\mathrm{S}(2)-\mathrm{O}(6)$	$109 \cdot 1$ (3)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(3)$	$105 \cdot 8$ (3)		
Cation-anion		Cation-water	
$\mathrm{Na}(1) \cdots \mathrm{O}(1)$	$2 \cdot 325$ (5)	$\mathrm{Na}(2) \cdots \mathrm{O}(7)$	$2 \cdot 374$ (5)
$\mathrm{Na}(1) \cdots \mathrm{O}\left(1^{\text {i }}\right.$)	$2 \cdot 479$ (5)	$\mathrm{Na}(2) \cdots \mathrm{O}\left(7^{\nu}\right)$	2.416 (6)
$\mathrm{Na}(1) \cdots \mathrm{O}\left(2^{\text {ii }}\right)$	2.364 (5)	$\mathrm{Na}(2) \cdots \mathrm{O}(8)$	2.443 (5)
$\mathrm{Na}(1) \cdots \mathrm{O}\left(2^{\text {i }}\right.$)	2.483 (5)	$\mathrm{Na}(2) \cdots \mathrm{O}(9)$	2.415 (6)
$\mathrm{Na}(1) \cdots \mathrm{O}\left(5^{\text {1ii] }}\right.$)	2.473 (5)		
$\mathrm{Na}(1) \cdots \mathrm{O}\left(6^{\text {iv }}\right.$)	$2 \cdot 392$ (5)		
$\mathrm{Na}(2) \cdots \mathrm{O}\left(2^{\text {v }}\right.$)	2.461 (5)		
$\mathrm{Na}(2) \cdots \mathrm{O}\left(3^{v}\right)$	2.488 (5)		
$\begin{aligned} & \text { Symmetry code: (i) }-x, 0.5+y, 0.5-z \text {; (ii) } x, 1+y, z \text {; (iii) } x \text {, } \\ & 0.5-y, 0.5+z \text {; (iv) }-x, 1-y,-z \text {; (v) } 1-x, 0.5+y, 0.5-z \text {; (vi) } \\ & 1-x,-0.5+y, 0.5-z \text {. } \end{aligned}$			

We thank the National Science Foundation and the State of Arkansas for financial support.

References

Enraf-Nonius (1982). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Gleu, K., Breuel, W. \& Rehm, K. (1938). Z. Anorg. Chem. 235, 201-210.
Hall, J. P. \& Griffith, W. P. (1981). Inorg. Chim. Acta, 48, 65-71.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lever, F. M. \& Powell, A. R. (1969). J. Chem. Soc. A, pp. 1477-1482.
McMillan, R. S., Mercer, A., James, B. R. \& Trotter, J. (1975). J. Chem. Soc. Dalton Trans. pp. 1006-1010.

Vogt, L. H., Katz, J. L. \& Wiberly, S. E. (1965). Inorg. Chem. 24, 1157-1163.

Acta Cryst. (1987). C43, 2002-2004

Structure of $\mathbf{P b P S e}_{3}$

By Hoseop Yun and James A. Ibers
Department of Chemistry, Northwestern University, Evanston, Illinois 60201, USA

(Received 16 April 1987; accepted 12 May 1987)

Abstract. Lead phosphorus triselenide, $M_{r}=475 \cdot 04$, monoclinic, $P 2_{1} / n, a=6.897$ (3), $b=7.642$ (3), $c=$ 9.696 (4) $\AA, \quad \beta=91.51(1)^{\circ}, \quad V=510.9 \AA^{3}, \quad Z=4$, 0108-2701/87/102002-03\$01.50
$D_{x}=6.174 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda\left(\right.$ Mo $\left.K \alpha_{1}\right)=0.7093 \AA, \quad \mu=$ $545.7 \mathrm{~cm}^{-1}, F(000)=780.61$ (including anomalous dispersion), $\quad T=123 \mathrm{~K}, \quad R\left(F^{2}\right)=0.070$ for 1301 © 1987 International Union of Crystallography

Table 1. Positional parameters and equivalent isotropic thermal parameters for PbPSe_{3}

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} \mathrm{a}_{i}^{*} \cdot \mathbf{a}_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
x				
Pb	$-0.037294(65)$	$0.113027(63)$	$0.748730(42)$	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Se}(1)$	$0.39243(16)$	$-0.00357(16)$	$-0.23255(10)$	$0.79(2)$
$\mathrm{Se}(2)$	$0.17639(16)$	$0.20244(16)$	$0.45673(11)$	$0.76(2)$
$\mathrm{Se}(3)$	$0.16575(15)$	$0.19184(16)$	$0.05467(11)$	$0.76(2)$
P	$0.44118(40)$	$0.10744(41)$	$-0.43641(27)$	$0.73(6)$

Table 2. Selected bond distances (\AA) and angles $\left(^{\circ}\right)$ for PbPSe_{3}

$\mathrm{Pb}-\mathrm{Se}(1)$	$3.096(2)$	$\mathrm{Pb}-\mathrm{Se}(2)$	$3 \cdot 298(2)$
$\mathrm{Pb}-\mathrm{Se}(1)$	$3 \cdot 101(2)$	$\mathrm{Pb}-\mathrm{Se}(3)$	$3.302(2)$
$\mathrm{Pb}-\mathrm{Se}(3)$	$3 \cdot 124(1)$	$\mathrm{P}-\mathrm{P}$	$2 \cdot 220(6)$
$\mathrm{Pb}-\mathrm{Se}(3)$	$3 \cdot 152(2)$	$\mathrm{P}-\mathrm{Se}(3)$	$2 \cdot 183(3)$
$\mathrm{Pb}-\mathrm{Se}(2)$	$3 \cdot 188(2)$	$\mathrm{P}-\mathrm{Se}(1)$	$2 \cdot 185(3)$
$\mathrm{Pb}-\mathrm{Se}(2)$	$3.256(2)$	$\mathrm{P}-\mathrm{Se}(2)$	$2 \cdot 199(3)$
$\mathrm{Se}(2)-\mathrm{P}-\mathrm{Se}(3)$	$109 \cdot 30(14)$	$\mathrm{P}-\mathrm{P}-\mathrm{Se}(1)$	$106.41(19)$
$\mathrm{Se}(1)-\mathrm{P}-\mathrm{Se}(2)$	$114.12(13)$	$\mathrm{P}-\mathrm{P}-\mathrm{Se}(2)$	$107.08(16)$
$\mathrm{Se}(1)-\mathrm{P}-\mathrm{Se}(3)$	$115.78(12)$	$\mathrm{P}-\mathrm{P}-\mathrm{Se}(3)$	$103.16(18)$

averaged reflections (including those having $F_{o}{ }^{2}<0$), $R(F)=0.034$ for 1062 reflections having $F_{o}{ }^{2}>3 \sigma\left(F_{o}{ }^{2}\right)$. The compound can be formulated as $\mathrm{Pb}_{2}\left(\mathrm{P}_{2} \mathrm{Se}_{6}\right)$ and the crystal structure consists of the packing of Pb^{2+} and $\mathrm{P}_{2} \mathrm{Se}_{6}{ }^{4-}$ ions. The Pb^{2+} ions are coordinated by eight Se atoms at the corners of a distorted bicapped trigonal prism. The $\mathrm{P}_{2} \mathrm{Se}_{6}{ }^{4-}$ ion has crystallographically imposed $\overline{1}$ symmetry and approximate $\overline{3} m$ molecular symmetry. An earlier structure determination of PbPSe_{3} [Becker, Brockner \& Schäfer (1984). Z. Naturforsch. Teil $A, 39,357-361]$ in space group Pn appears to be in error.

Experimental. A stoichiometric combination of the elements, Pb powder, P powder, and Se pellets, was loaded into a silica tube with a small amount of I_{2}. The tube was evacuated to $\sim 10^{-4}$ Torr ($\sim 10^{-2} \mathrm{~Pa}$) and sealed. The vessel was placed for 7 d in a furnace having a temperature gradient of $973 / 1023 \mathrm{~K}$. Red, irregularly shaped polyhedral crystals formed at the cool end of the tube. The crystal used for data collection was a thin plate bounded by $\{101\}$, (011), and ($0 \overline{\mathrm{I}} 0$); crystal volume $1.04 \times 10^{-4} \mathrm{~mm}^{3}$. Unit-cell parameters were derived from a least-squares refinement of 14 reflections in the range of $8<\theta<13^{\circ}$, automatically centered on a Picker FACS-1 diffractometer. Intensity data were collected with the $\theta-2 \theta$ scan technique; intensities of six standards monitored throughout data collection were constant within intensity statistics. A total of 5064 X-ray diffraction intensities, measured to $[(\sin \theta) / \lambda]_{\max }=0.6727 \AA^{-1}$, in the index range $-9 \leq h \leq 9,-10 \leq k \leq 10,-13 \leq$ $l \leq 13$, were corrected for absorption with use of the analytical method (de Meulenaer \& Tompa, 1965);
min. and max. transmission factors were 0.08 and 0.31 . The F_{o}^{2} values were averaged to yield 1301 unique data $\left[R_{\text {int }}\left(F^{2}\right)=0.061\right.$ for $\left.F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)\right]$.

The initial position for the Pb atom was determined from a Patterson synthesis. Positions for the Se and P atoms were obtained from a subsequent electron density synthesis. Scattering factors and anomalousdispersion terms were taken from the usual sources (Cromer \& Waber, 1974; Cromer, 1974). All calculations were performed on a Harris 1000 computer with methods and programs standard for this laboratory (Waters \& Ibers, 1977). The final anisotropic refinement on $F_{o}{ }^{2}$, based on 47 variables and 1301 observations, resulted in an R index on F^{2} of 0.070 and an isotropic-extinction parameter (Zachariasen, 1968) of 1.97×10^{-6}, with Δ / σ not exceeding 0.005 . Other residuals are $w R\left(F^{2}\right)=0.086$, where the weights were derived from counting statistics and a value of p of 0.04 , and $R(F)\left[F_{o}{ }^{2}>3 \sigma\left(F_{o}{ }^{2}\right)\right]$ $=0.034$. The error in an observation of unit weight is $1 \cdot 27$. A final difference electron density map exhibited no features with heights greater than about 8% that of the P atom.

Table 1 lists fractional coordinates and equivalent isotropic thermal parameters.* A list of selected bond distances and angles may be found in Table 2. A perspective view down [100] of the structure is given in Fig. 1.

[^0]

Fig. 1. Perspective view of PbPSe_{3} along [100]. The $\mathrm{P}_{2} \mathrm{Se}_{6}{ }^{4-}$ ions are shown with darkened bonds connecting the P and Se atoms.

Related literature. The distorted bicapped trigonalprismatic arrangement of Se atoms about the Pb atom is similar to that of the S atoms in $\mathrm{Pb}_{3}\left(\mathrm{PS}_{4}\right)_{2}$ (Post \& Kramer, 1984). The $\mathrm{P}_{2} \mathrm{Se}_{6}{ }^{4-}$ geometry found here is typical of other $\mathrm{P}_{2} Q_{6}{ }^{4-}$ units ($Q=\mathrm{S}$ or Se) such as those found in $\mathrm{ZrP}_{2} \mathrm{~S}_{6}$ and $\mathrm{ThP}_{2} \mathrm{~S}_{6}$ (Simon, Peters, Peters \& Hahn, 1982).

After the completion of this determination we discovered the report by Becker, Brockner \& Schäfer (1984) on the same structure. For reasons that are not clear from that report, they chose to refine the structure of PbPSe_{3} in space group Pn , even though they note that $0 k 0$ reflections with k odd were not observed. Their structural refinement $[R(F)=0.085,79$ variables, 1388 observations] is inferior to the present one even though it involves the extra variables that result from placement of two independent formula units in the asymmetric unit. Their final results give a calculated Patterson function that is indistinguishable from that calculated from the present parameters. We conclude that their choice of space group is incorrect. As would be expected in such circumstances, the distances and angles found by Becker et al. (1984) are much less regular than those found here. For example, their $\mathrm{P}-\mathrm{Se}$ distances range from $2 \cdot 127$ (22) to $2 \cdot 245(22) \AA$ compared with $2 \cdot 183$ (3) to $2 \cdot 199$ (3) \AA here. It is
probable that the structures of PbPS_{3} (Becker, Brockner \& Schäfer, 1983) and SnPS_{3} (Dittmar \& Schäfer, 1974) suffer from the same error in spacegroup choice.

This research was supported by the US National Science Foundation-Solid State Chemistry-grant No. DMR83-15554.

References

Becker, R., Brockner, W. \& Schäfer, H. (1983). Z. Naturforsch. Teil A, 38, 874-879.
Becker, R., Brockner, W. \& Schäfer, H. (1984). Z. Naturforsch. Teil A, 39, 357-361.
Cromer, D. T. (1974). International Tables for X-ray Crystallography. Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography. Vol. IV, Table 2.2A, Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Dittmar, G. \& Schäfer, H. (1974). Z. Naturforsch. Teil B, 29, 312-317.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Post, E. \& Kramer, V. (1984). Mater. Res. Bull. 19, 1607-1612.
Simon, V. A., Peters, K., Peters, E. M. \& Hahn, H. (1982). Z. Anorg. Allg. Chem. 491, 295-300.
Waters, J. M. \& Ibers, J. A. (1977). Inorg. Chem. 16, 3273-3277.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1987). C43, 2004-2006

Structure du Germanate d'Indium et de Lithium

Par Marcel Touboul*
Laboratoire de Chimie Minérale, Université P. et M. Curie, 4 place Jussieu, Tour 54, 75230 Paris CEDEX 05, France
et Paul Toledano
Laboratoire de Spectrochimie du Solide, Université P. et M. Curie, 4 place Jussieu, Tour 54, 75230 Paris CEDEX 05, France

(Reçu le 5 janvier 1987, acceptéle 21 mai 1987)

Abstract. $\mathrm{LiInGeO}_{4}, \quad M_{r}=258 \cdot 3$, orthorhombic, Pnma, $a=10.754$ (5), $b=6.088$ (2), $c=5.007$ (2) \AA, $V=328(1) \AA^{3}, Z=4, D_{x}=5.237 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \bar{\alpha})$ $=0.71069 \AA, \quad \mu=16.53 \mathrm{~mm}^{-1}, \quad F(000)=464, \quad T=$ 293 K , final $R=0.027$ for 1033 unique observed reflections. Monocrystals have been obtained by cooling a $2 \mathrm{Li}_{2} \mathrm{CO}_{3}-\mathrm{In}_{2} \mathrm{O}_{3}-4 \mathrm{GeO}_{2}$ melt from 1473 K . This compound has an olivine-type structure with four LiIn GeO_{4} motifs per cell. It is built from LiO_{6} and InO_{6} octahedra and GeO_{4} tetrahedra joined by their apices.

[^1]0108-2701/87/102004-03\$01.50

Li occupies all $4(a)$ positions and In one $4(c)$ position. Analyses have been performed to disclose a possible sharing of the sites between Li and In ; the refinement of the ratios of distribution showed a clear separation of the two elements in their respective positions. Likewise an attempt to reveal a partial occupation of site 4(a) by Ge showed the total absence of six-coordination for Ge .

Partie expérimentale. Les composés $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{In}_{2} \mathrm{O}_{3}$ et GeO_{2}, en proportion 2:1:4, sont portés à 1473 K en 12 h puis maintenus à cette temperature pendant 1 h ; un refroidissement lent $\left(10 \mathrm{~K} \mathrm{~h}^{-1}\right)$ conduit à des

[^2]
[^0]: * Lists of structure amplitudes and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44044 (8 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Auteur auquel toute correspondance doit être adressee.

[^2]: (c) 1987 International Union of Crystallography

